ДНК-микрочип
ДНК-микрочип (англ. DNA microarray) — это сложная технология, используемая в молекулярной биологии и медицине. ДНК-микрочип представляет собой небольшую поверхность, на которую с большой плотностью в определённом порядке нанесены фрагменты одноцепочечной синтетической ДНК с известной последовательностью. Эти фрагменты выступают в роли зондов, с которыми гибридизуются (образуют двуцепочечные молекулы) комплементарные им цепи ДНК из исследуемого образца, обычно меченные флуоресцентным красителем. Чем больше в образце молекул ДНК с определенной последовательностью, тем большее их количество свяжется с комплементарным зондом, и тем сильнее будет оптический сигнал в точке микрочипа, куда был «посажен» соответствующий зонд. После гибридизации поверхность микрочипа сканируется, и в результате каждой последовательности ДНК ставится в соответствие тот или иной уровень сигнала, пропорциональный числу молекул ДНК с данной последовательностью, присутствующих в смеси.
В обычном ДНК микрочипе (н-р, производства Affymetrix) зонды прикрепляются к твердой поверхности — стеклянному или силиконовому чипу. Другие платформы, например, выпускаемые Illumina, используют микроскопические шарики вместо больших твердых поверхностей. Технология ДНК-микрочипов находит самые разнообразные применения в современной биологии и медицине для анализа сложных смесей ДНК — например, совокупности всех транскриптов (матричных РНК) в клетке. ДНК микрочипы используют для анализа изменения экспрессии генов, выявления однонуклеотидных полиморфизмов, генотипирования или повторного секвенирования мутантных геномов. Микрочипы отличаются по конструкции, особенностям работы, точности, эффективности и стоимости.
Ниже приводится пример эксперимента с использованием ДНК-микрочипа.
Выделяются или выращиваются биологические образцы, которые необходимо сравнить. Они могут соответствовать одним и тем же индивидуумам до и после какого-либо лечения (случай парных сравнений), либо различным группам индивидуумов, например, больным и здоровым, и т. д.
Из образца выделяется очищенная нуклеиновая кислота, являющаяся объектом исследования: это может быть РНК в исследовании профиля экспрессии генов, ДНК при изучении сравнительной геномной гибридизации и т.д. Данный пример соответствует первому случаю.
Проверяется качество и количество полученной нуклеиновой кислоты. Если требования соблюдены, эксперимент может быть продолжен.
На основе имеющихся образцов РНК в процессе обратной транскрипции синтезируются последовательности комплементарных ДНК (кДНК, англ. cDNA).
В процессе амплификации (синтеза дополнительных копий ДНК) количество последовательностей кДНК в образцах многократно увеличивается.
К концам последовательностей кДНК присоединяются флуоресцентные или радиоактивные метки.
Полученные образцы в смеси с необходимыми химическими веществами через микроскопическое отверстие наносятся на ДНК-микрочипы и начинается процесс гибридизации, в ходе которого одна из цепей кДНК присоединяется к комплементарной ей цепи, имеющейся на микрочипе.
После окончания процесса гибридизации чипы промываются для удаления остатков материала.
Полученные микрочипы сканируются при помощи лазера. На выходе получается одно- или двухцветные изображения (в зависимости от количества использованных красителей).
На каждое изображение накладывается сетка, так, что каждой её ячейке соответствует участок чипа с пробами одного типа. Интенсивности свечения проб в ячейке сетки ставится в соответствие некоторое число, которое, в самом первом приближении, может служить мерой количества присутствовавших последовательностей РНК в соответствующем образце.
Дальнейшая обработка результатов требует многоэтапного привлечения сложного статистического аппарата.
Предобработка данных эксперимента
Корреляция между интенсивностями двух проб одного ДНК-микрочипа, представляющих один и тот же ген, обычно превышает 95%. Часто этот факт интерпретируют как подтверждение хорошей воспроизводимости экспериментов с чипами. Однако, если один и тот же биологические материал разделить на две части и сделать с ними разные микрочипы, корреляция между полученными интенсивностями, скорее всего, будет составлять от 60 до 80%. Корреляция на чипах с образцами, взятыми у мышей из одного помёта, может опускаться до 30%. Если эксперименты проводятся в разных лабораториях, корреляция между их результатами может быть ещё ниже
Такая низкая воспроизводимость интенсивностей связана с совокупным воздействием большого количества источников вариации. Их можно разделить на три большие группы. Биологическая вариация включает неотъемлемые особенности организмов. Техническая вариация появляется на этапе выделения образцов, их окрашивания и гибридизации. Погрешность измерения связана со сканированием готовых массивов, на результаты которого может повлиять, например, пыль внутри сканера.
Нейтрализация эффектов технической вариации и ошибки измерения производится на этапе предобработки ДНК-микрочипов.
Фоновая поправка
Необходимость фоновой поправки связана с наличием таких мешающих факторов, как шум оптической системы распознавания (данные интенсивности, полученные при сканировании, не равны "настоящим" интенсивностям проб) и неспецифическая гибридизация (присоединение нуклеотидных последовательностей к зондам чужих проб).
Нормализация
Нормализация данных позволяет сделать несколько рассматриваемых в эксперименте чипов пригодными к сравнению между собой. Основная цель анализа на этом этапе - исключить влияние систематических небиологических различий между микрочипами. Источников таких различий множество: вариации эффективности обратной транскрипции, маркировки красителями, гибридизации, физические различия между чипами, небольшие различия в концентрации реагентов, вариация лабораторных условий.
Показано, что выбор метода нормализации оказывает существенное влияние на результат анализа
